

Stimulation of Gap Junctional Intercellular Communication by Thalidomide and Thalidomide Analogs in Human Skin Fibroblasts

Swantje Nicolai, Helmut Sies and Wilhelm Stahl
Institut für Physiologische Chemie I, Heinrich-Heine-Universität Dosseldorf, P.O. Box 101007,
D-40001 Dosseldorf, Germany

ABSTRACT. It has been speculated that gap junctional intercellular communication (GJIC), an intercellular signalling pathway, is involved in embryogenesis by coupling compartments of the same developmental potential. We found that thalidomide induces GJIC in human fibroblasts after activation by liver microsomes in concentrations as low as 10^{-7} M. Treatment of cells with the thalidomide analog EM-12 increased GJIC without prior activation. No alteration of GJIC was detected with phthalimide and glutamate, the components of thalidomide. However, 2-phthalimido glutaric acid (PGA), a hydrolysis product of thalidomide, stimulated GJIC without activation at concentrations between 10^{-10} M and 10^{-5} M. We suggest modification of GJIC as a biochemical mechanism responsible for pharmacological and toxicological properties of thalidomide and related compounds. EIOCHEM PHARMACOL **53**;10:1553–1557, 1997. © 1997 Elsevier Science Inc.

KEY WORDS. teratogen; thalidomide; gap junctions; intercellular communication; dye transfer; cell culture

Thalidomide is a potent human teratogen which led to limb malformation in newborns after maternal usage [1]. The biochemical mechanisms underlying its teratogenic effect are still under investigation. Various processes have been discussed including interference with biologically relevant molecules, interaction with DNA, or influence on cell-cell interactions [2]. Recently, the down-regulation of adhesion receptors in embryonal cells has been postulated as a mechanism of teratogenic action of thalidomide [3].

Thalidomide is active in the treatment of inflammation in leprosy [4] and currently is in use in the therapy of this disease [5]. Further research revealed additional pharmacological activities of thalidomide, including inhibition of graft-versus-host reactions [6, 7], inhibition of fibroblast growth factor-induced angiogenesis [8], and suppression of the activation of latent human immunodeficiency virus type 1 (HIV1) in vitro [9]. It was shown that thalidomide and its derivatives induce changes in the pattern of integrin receptors and other surface markers of lymphocytes [10, 11], properties important with respect to their effects on the immune system. Thalidomide affects cytokine production in vitro, enhancing the production of interleukin-4 and interleukin-5 and inhibiting interferon-y release in stimulated human peripheral blood mononuclear cells [12]. Inhibitory effects on the production of tumor necrosis factor-α by enhancement of mRNA degradation have been discussed in context with its immunosuppressive action [13].

Intercellular communication via gap junctions is an important signalling pathway and involves the transfer of low-molecular-weight compounds such as second messengers or ionic signals between cells [14]. Gap junctions are composed of a system of cell-to-cell channels connecting the cytosol of coupled cells. Gap junctional coupling has been demonstrated in embryonic tissues, and it is assumed that gap junctional intercellular communication (GIIC) is involved in the process of pattern formation [15]. Furthermore, differences in the expression pattern of connexin during embryogenesis suggest that this signalling pathway plays a role in embryonal development [15]. Gap junctional intercellular communication becomes restricted to domains of cells with the same developmental potential [16]. Inhibition of GIC has been discussed as a mechanistic link between teratogenesis and carcinogenesis [17].

GJIC is stimulated by various compounds, including retinoic acid, retinoid derivatives [18], e.g. 4-oxoretinoic acid [19], and vitamin D [20, 21], whereas tumor promotors such as phorbol ester generally inhibit GJIC [22].

Here we describe the stimulation of this pathway of intercellular communication by thalidomide and some of its analogs, an effect which is potentially related to some of its biological properties.

MATERIALS AND METHODS Chemicals

Thalidomide and 2-phthalimido glutaric acid (PGA) were kindly provided by Grünenthal (Stolberg, Germany), while

Corresponding author: Dr. W. Stahl, Institut für Physiologische Chemie I, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, D-40001 Düsseldorf, Germany, Tel. +49 211 811 2711; FAX +49 211 811 3029; E-mail: wilhelm.stahl@uni-duesseldorf.de.

Abbreviations: GJIC, gap junctional intercellular communication; PGA, 2-phthalimido glutaric acid.

Received 18 October 1996; accepted 17 January 1997.

1554 S. Nicolai et al.

supidimide and EM-12 were a gift from Dr. Neubert (Free University Berlin, Germany). Lucifer yellow CH, *all-trans* retinoic acid, glutamic acid hydrochloride, and phthalimide were purchased from Aldrich (Steinheim, Germany). Other chemicals were obtained from Merck (Darmstadt, Germany).

Preparation of Microsomes and Preincubation of the Test Compounds

Microsomes were isolated from livers of untreated male Wistar rats as previously described [23]; protein concentration was 0.6 mg/mL microsomal suspension. The mixture was supplemented with NADPH (7×10^{-4} M). Thalidomide, EM-12, and supidimide (dissolved in tetrahydrofuran) were added to the suspension of microsomes to yield a concentration of 4×10^{-4} M. Final concentration of tetrahydrofuran in the mixture was 4%; controls contained only solvent. The microsomal mixtures were incubated for 60 min at 37°C. The incubation mixtures described above were used to test the activated compounds at a final concentration of 10^{-5} M in cell culture; for lower concentrations, less of the parent compound was added to the incubation mixture.

Cells and Culture Conditions

The human skin fibroblast cell line 161 BR (ECACC, no. 90011809) and the human fetal skin fibroblast cell line HFFF2 (ECACC, no. 86031405) were cultured with Dulbecco's modification of minimal essential medium (Gibco BRL, Eggenstein, Germany), supplemented with 10% fetal calf serum (Life Technologies, Eggenstein, Germany) and 2 mM L-glutamine [19, 20]. Confluent cells were incubated with the indicated concentrations of *all-trans* retinoic acid, 2-phthalimido glutaric acid, phthalimide (dissolved in ethanol), thalidomide, supidimide or EM-12 (dissolved in tetrahydrofuran). For treatment with preincubated thalidomide, supidimide or EM-12, 250 μL of the preincubated microsomal mixtures were added to 10 mL of medium which was filtered through 0.22 μm Millex-GV (Millipore S.A., Molsheim, France) prior to addition to cultured cells.

Dye Transfer Assay

On days 1 and 3, junctional communication was measured by microinjection of the fluorescent dye Lucifer yellow CH (10% in 0.33 M LiCl, w/v) into cells of confluent cultures by means of a microinjector and micromanipulator (Eppendorf, Hamburg, Germany). The number of fluorescent neighbours of the injected cells was scored 5 min after injection and serves as an index of junctional communication [24]. The data plotted in the figures are mean values of 10 individual injections with SEM given as error bars. Differences between means were analyzed for statistical significance by Student's *t*-test. Each experiment was repeated at least in triplicate. Similar significant differences were observed in all experiments. The coefficient of variation between experiments was less than 17%.

Thalidomide

2-phthalimido glutaric acid

EM-12

Supidimide

FIG. 1. Thalidomide and related compounds. The enantiomers are not specifically indicated.

RESULTS

The structures of the compounds used are given in Fig. 1. These include thalidomide, its hydrolysis product 2-phthalimido glutaric acid as well as the teratogenic analog of thalidomide, EM-12, and its non-teratogenic derivative supidimide.

The influence of thalidomide and its analogs after single treatment of human skin fibroblast cell line 161 BR on gap junctional intercellular communication is summarized in Fig. 2. Upon incubation of cells with 10⁻⁵ M of thalidomide, no significant alteration of GJIC was observed in the dye transfer assay at days 1 and 3 of cell culture. However, when the compound had been preincubated with liver microsomes, GJIC significantly increased within three days of culturing and approached communication levels comparable to those of the positive control, retinoic acid (10⁻⁶ M).

Communication was also induced by EM-12 (10⁻⁵ M). In contrast to thalidomide, no activation was necessary to obtain stimulation of GJIC, but the effects of EM-12 after preincubation with liver microsomes were somewhat more pronounced. Without activation, supidimide (10⁻⁵ M) did not alter GJIC. After preincubation with microsomes, the compound exhibited stimulation of GJIC after three days in cell culture, but not on day 1.

In addition, 2-phthalimido glutaric acid (10⁻⁵ M), a hydrolysis product of thalidomide, induced GJIC in fibro-

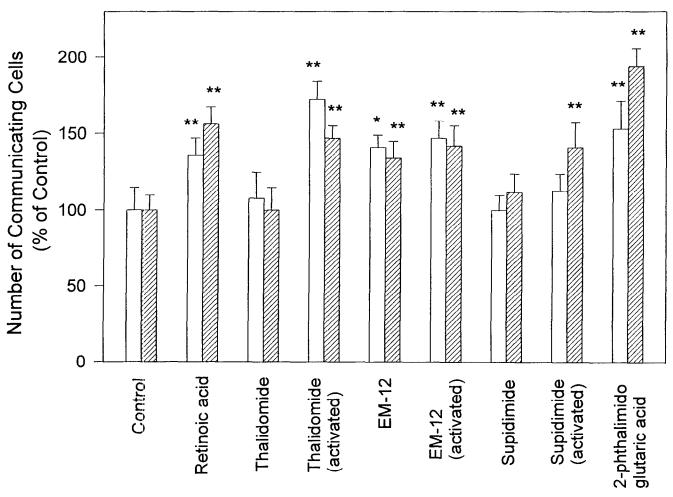


FIG. 2. Induction of gap junctional communication (GJIC) in human skin fibroblasts of the cell line 161 BR. The number of communicating cells (% of control) induced by thalidomide, EM-12, supidimide, and 2-phthalimido glutaric acid was measured at days 1 (□) and 3 (☒). The absolute number of communicating cells in controls was 19.2 ± 2.9 at day 1 and 17.8 ± 1.8 at day 3. Significantly different from control: *P < 0.01; **P < 0.001.

blasts to about the same extent as activated thalidomide. However, no activation was necessary to observe an increase in GJIC (Fig. 2). No alteration of GJIC was observed when the cells were grown in the presence of phthalimide (10^{-5} M) or glutamic acid (10^{-5} M), both components of thalidomide.

The effects of 2-phthalimido glutaric acid and EM-12 on gap junctional intercellular communication were also detected at lower concentrations. 2-phthalimido glutaric acid and EM-12 at 10^{-7} M stimulated GJIC at 190% and 160% of control, respectively, at day 3 of treatment; 2-phthalimido glutaric acid was active at even 10^{-10} M.

Very similar results were obtained in the human fetal skin fibroblast cell line HFFF2 (Fig. 3). Without activation, no effects of thalidomide (10^{-5} M) were observed, whereas after preincubation with rat liver microsomes GJIC was increased at days 1 and 3. Supidimide was only active after incubation with microsomes. In contrast, GJIC increased after incubation with EM-12 (10^{-5} M) and 2-phthalimido glutaric acid (10^{-5} M) without activation by liver microsomes. The effects of 2-phthalimido glutaric acid were comparable to those of the positive control, retinoic acid (10^{-6} M) .

DISCUSSION

The present work is, to our knowledge, the first report on the stimulation of intercellular communication via gap junctions by thalidomide in human cells. No effects of this compound were observed in Hamster V79 cells using the metabolic cooperation assay [25]. Our data show that the stimulation of GIIC is not mediated by the parent compound itself, since activation by a liver microsomal system is required (Fig. 2). The nature of the ultimately active compound is still unknown. However, 2-phthalimido glutaric acid, a product of thalidomide hydrolysis, stimulates GJIC without further activation even at concentrations of 10⁻¹⁰ M. The compound was not detectable in incubation mixtures of rat liver microsomes and thalidomide at a detection limit of 10⁻⁷ M. Similar results were observed with EM-12, a thalidomide analog lacking a keto group in the five-membered ring. This structural property might favor the non-enzymatic hydrolysis of the glutarimide ring preferentially to the isoindolinone system, yielding the respective analog of 2-phthalimido glutaric acid. The hydrolysis of a single imide bond in the 1556 S. Nicolai et al.

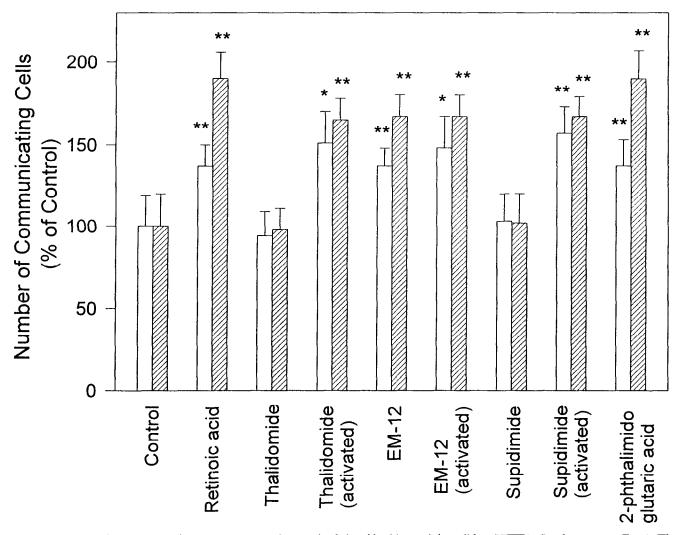


FIG. 3. Induction of gap junctional communication in human fetal skin fibroblasts of the cell line HFFF2. Conditions as in Fig. 2. The absolute number of communicating cells in controls was 16.8 ± 2.9 at day 1 and 18.9 ± 4.2 at day 3.

phthalimide moiety has been associated with an inactivation of the drug [26].

A variety of biochemical pathways are involved in the modulation of GJIC, including the regulation of connexin expression or connexin protein phosphorylation [14]. It might be speculated that ligand-activated receptors such as the retinoic acid receptors or orphan receptors are targets for thalidomide metabolites and analogs.

Both thalidomide and EM-12 are teratogenic in primates, causing typical limb malformations [3]. GJIC plays a role in embryonal development, and the expression of gap junction proteins (connexins) varies during fetal development. Other teratogenic compounds such as retinoic acid and phorbol esters also affect GJIC [18, 22]. In most cases, retinoids induce while phorbol esters inhibit GJIC. It is not known whether these properties are responsible for the teratogenic potential of these compounds. However, it might be speculated that disturbances in GJIC, either by induction or by inhibition, could influence embryonal development. It should be noted that supidimide, which was also found to induce GJIC in fibroblasts after activation

(Fig. 3), exhibits little teratogenicity *in vivo*. Thus, further studies are necessary to evaluate the potency of thalidomide and its analogs to induce GJIC in relation to their teratogenic activity.

Thalidomide is used in the therapy of leprosy [4] and shows beneficial effects in the treatment of cutaneous lesions of systemic lupus erythematosus [27]. The latter disorder is also efficiently treated with different retinoids, capable of inducing GJIC. Although it is not known whether GJIC is a relevant biochemical mechanism in the treatment of lupus erythematosus, it appears of interest to test whether similar pathways are operative for retinoids and thalidomide in this disease.

S. N. is a stipendiary of the Graduiertenkolleg "Toxikologie". The study was supported by the Deutsche Forschungsgemeinschaft (Si 255/10-1) and the National Foundation of Cancer Research, Bethesda, MD, U.S.A. We would like to thank Prof. D. Neubert, FU-Berlin, and Dr. K. Zwingenberger, Grünenthal GmbH Stolberg, for helpful discussion.

References

- Lenz W, A short history of thalidomide embryopathy. Teratology 38: 203–215, 1983.
- Stephens TD, Proposed mechanisms of action in thalidomide embryopathy. Teratology 38: 229–239, 1988.
- 3. Neubert R, Hinz N, Thiel R and Neubert D, Down-regulation of adhesion receptors on cells of primate embryos as a probable mechanism of the teratogenic action of thalidomide. *Life Sci* **58:** 295–316, 1996.
- 4. Sheskin J, Thalidomide in the treatment of lepra reactions. Clin Pharmacol Ther 6: 303–306, 1965.
- Crawford CL, Use of thalidomide in leprosy. Adv Drug React Toxicol Rev 13: 177–192, 1994.
- Field EO, Gibbs JE, Tucker DF and Hellmann K, Effect of thalidomide on the graft versus host reaction. *Nature* 211: 1308–1310, 1966.
- 7. Uthoff K, Zehr KJ, Gaudin PB, Kumar P, Cho PW, Vogelsang G, Hruban RH, Baumgartner WA and Stuart RS, Thalidomide as replacement for steroids in immunosuppression after lung transplantation. Ann Thorac Surg 59: 277–282, 1995.
- 8. D'Amato RJ, Loughnan MS, Flynn E and Folkman J, Thalidomide is an inhibitor of angiogenesis. *Proc Natl Acad Sci* **91**: 4082–4085, 1994.
- Makonakawkyoon S, Limson-Pobre RNR, Moreira AL and Schauf V, Thalidomide inhibits the replication of human immunodeficiency virus type 1. Proc Natl Acad Sci 90: 5974–5978, 1993.
- Nogueira AC, Neubert R, Helge H, and Neubert D, Thalidomide and the immune system.
 Simultaneous up- and down-regulation of different integrin receptors on human white blood cells. *Life Sci* 55: 77–92, 1994.
- 11. Geitz H., Handt S, and Zwingenberger K, Thalidomide selectively modulates the density of cell surface molecules involved in the adhesion cascade. *Immunopharmacol* 31: 213–221, 1996.
- 12. Mchugh SM, Rifkin IR, Deighton J, Wilson AB, Lachman PJ, Lockwood CM and Ewan PW, The immunosuppressive drug thalidomide induces T helper cell type 2 (Th2) and concomitantly inhibits Th1 cytokine production in mitogen- and antigen-stimulated human peripheral blood mononuclear cell cultures. Clin Exp. Immunol 99: 160–167, 1995.
- 13. Moreira A, Sampaio EP, Zmuidzinas A, Frindt P, Smith KA and Kaplan G, Thalidomide exerts its inhibitory action on tumor necrosis factor α by enhancing mRNA degradation. *J Exp Med* 177: 1675–1680, 1993.
- 14. Goodenough DA, Goliger JA, and Paul DL, Connexins, connexons, and intercellular communication. *Annu Rev Biochem* **65:** 475–502, 1996.

- 15. Dahl E, Winterhager E, Traub O and Willecke K, Expression of gap junction genes, connexin40 and connexin43, during fetal mouse development. *Anat Embryol* 191: 267–278, 1995.
- Damen P, Dictus WJAG, Role of gap junctions in mesoderm induction in *Patella vulgata* (Mollusca, Gastropoda): A reinvestigation. *Progr Cell Res* 3: 219–223, 1993.
- Loch-Caruso R and Trosko JE, Inhibited intercellular communication as a mechanistic link between teratogenesis and carcinogenesis. CRC Crit Rev Toxicol 16: 157–183, 1985.
- Mehta PP, Bertram JS and Loewenstein WR, The actions of retinoids on cellular growth correlate with their actions on gap junctional communication. J Cell Biol 108: 1053–1065, 1989.
- Hanusch M, Stahl W, Schulz WA and Sies H, Induction of gap junctional communication by 4-oxoretinoic acid generated from its precursor canthaxanthin. Arch Biochem Biophys 317: 423–428, 1995.
- Stahl W, Nicolai S, Hanusch M and Sies H, Vitamin D influences gap junctional communication in C3H/10T1/2 murine fibroblast cells. FEBS Lett 352: 1–3, 1994.
- Clairmont A, Tessmann D, Stock A, Nicolai S, Stahl W and Sies H, Induction of gap junctional communication by vitamin D in human skin fibroblasts is dependent on the nuclear vitamin D receptor. Carcinogenesis 17: 1389–1391, 1996.
- Budunova IV and Williams GM, Cell culture assays for chemicals with tumor-promoting or tumor-inhibiting activity base on the modulation of intercellular communication. Cell Biol Toxicol 10: 71–116, 1994.
- Cadenas E, and Sies H, Low level chemiluminescence of liver microsomal fractions initiated by tert-butyl hydroperoxide. Eur J Biochem 124: 349–356, 1982.
- Steward WW, Functional connections between cells as revealed by dye-coupling with a fluorescent naphthalimide tracer. Cell 14: 741–759, 1978.
- Trosko JE, Yotti LP, Warren ST, Tsushimoto G, and Chang C, Inhibition of cell-cell communication by tumor promotors.
 In: Cocarcinogenesis and Biological Effects of Tumor Promotors (Eds. Hecker E, Kunz W, Fusenig NE, Marks F, and Thielmann HW) pp. 565–585, Raven Press, NY, 1982.
- 26. Braun AG, and Weinreb, SL, Teratogen metabolism: spontaneous decay products of thalidomide analogues are not bioactivated by liver microsomes. *Teratogenesis Carcinogenesis and Mutagenesis* 5: 149–158, 1985.
- 27. Atra E, and Sato El, Treatment of the cutaneous lesions of systemic lupus erythematosus with thalidomide. Clin Exper Rheumatol 11: 487–493, 1993.